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1. Introduction

It is well known that, despite asymptotic freedom, QCD can display non-perturbative

phenomena even in situations where the system is characterised by a large momentum or

mass scale Q, Q À 1 GeV. For instance, in deep inelastic scattering, power-suppressed

contributions may arise, of the form ∼ En
QCD/Qn, where the numerator represents a non-

perturbative contribution related to a certain quark or gluon condensate of dimension n,

arising from the Operator Product Expansion, and EQCD denotes the typical QCD energy

scale, of a few hundred MeV.

A conceptually similar situation arises when Q is replaced by a high temperature T , and

the observable is replaced by minus the grand canonical free energy density, or the pressure,

p(T ). The Operator Product Expansion gets then replaced by a construction of a low-

energy effective field theory, which in the case of high temperatures amounts to dimensional

reduction [1]. The non-perturbative scale EQCD gets replaced by that of the effective theory,

∼ αsT [2, 3], where αs = g2/4π is the strong coupling constant. In the effective theory, the

leading non-perturbative condensate has the dimension n = 3. Therefore, the formal weak-

coupling expansion of p(T ) contains non-perturbative coefficients, starting at O(g6) [2].

While O(g6) may appear to be an academically high order, recent advances in perturba-

tive QCD have made its determination an issue of practical importance [4, 5]. Indeed, per-

turbative corrections to the non-interacting Stefan-Boltzmann form of p(T ) have been de-

termined at relative orders O(g2) [6], O(g3) [7], O(g4 ln(1/g)) [8], O(g4) [9], O(g5) [10, 11],

and O(g6 ln(1/g)) [12], as a function of the number of colours, Nc, the number of massless
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quark flavours, Nf , and, most recently, the chemical potentials, µi, that can be assigned

to the various quark flavours [13] (as long as they are small enough compared with the

temperature, |µi|. T/g [14]). Reaching the next unknown order O(g6) depends, therefore,

on the inclusion of the non-perturbative term. Moreover, studies with high-temperature

observables other than the pressure, in which analogous non-perturbative coefficients arise

but at lower orders, have shown that their inclusion is in general numerically important,

in order to reliably determine the properties of hot QCD at physically relevant tempera-

tures [15, 16].

By now, the first step has already been taken in order to determine the non-perturbati-

ve O(g6) term: the gluon condensate of dimension n = 3 was measured with lattice Monte

Carlo techniques within the dimensionally reduced effective field theory in Ref. [17]. Given

that the other parts of the pressure computation have been formulated in the continuum

MS scheme, however, this result needs still to be converted to the same regularization [18,

19]. The purpose of the present paper is to finalise this task with a certain numerical

precision. Afterwards, only purely perturbative contributions in the MS scheme remain to

be determined, in order to complete the expression of p(T ) up to O(g6) (in the notation of

Ref. [12], βE1 remains unknown, while βE2, βE3 have recently become available [20, 16]).

We note that apart from formal interests, the computations outlined above may also

have phenomenological relevance, in the contexts of cosmology and of heavy ion collision

experiments. We do not elaborate on these issues in the present paper, however, since the

current status on these fronts has very recently been summarised elsewhere [21].

The plan of this paper is the following. In section 2 we set up the notation and describe

the overall strategy of the computation. Section 3 contains a discussion of our computa-

tional tool, Numerical Stochastic Perturbation Theory in a covariant gauge. Section 4

contains the data analysis and our results, while section 5 draws some conclusions.

2. Basic definitions and overall strategy

Let us start by considering three-dimensional (3d) pure SU(Nc) gauge theory in dimensional

regularization. The Euclidean continuum action can be written as

SE =

∫

ddxLE , LE =
1

2g2
3

Tr [FklFkl] , (2.1)

where d = 3 − 2ε, g2
3 is the (dimensionful) gauge coupling, k, l = 1, . . . , d, Fkl = i[Dk,Dl],

Dk = ∂k + iAk, Ak = AB
k TB , TB are the Hermitean generators of SU(Nc), normalised as

Tr [TATB ] = δAB/2, and repeated indices are assumed to be summed over. Leaving out for

brevity gauge fixing and Faddeev-Popov terms, the “vacuum energy density” is defined as

f MS ≡ − lim
V →∞

1

V
ln

[
∫

DAk exp
(

−SE

)

]

MS

, (2.2)

where V is the d-dimensional volume, DAk a (gauge-invariant) functional integration mea-

sure, and we have assumed the use of the MS dimensional regularization scheme to remove

any 1/ε poles from the expression.
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The physical significance of f MS for high-temperature QCD enters through the frame-

work of dimensional reduction [1, 22]. Indeed, after the replacement g2
3 → g2T [1 +O(g2)],

f MS appears in the QCD pressure as an additive contribution, δp(T ) = −T f MS [2, 11].

The dependence on regularization (in particular, on the MS scheme scale parameter µ̄)

disappears, once all other contributions of the same order [12] have been added.

Now, dimensional reasons and a perturbative computation of ultraviolet divergences

[23] show that the structure of f MS is (after letting ε → 0)

f MS = −g6
3

dAN3
c

(4π)4

[(

43

12
− 157

768
π2

)

ln
µ̄

2Ncg
2
3

+ BG

]

, (2.3)

where dA ≡ N2
c − 1. The non-perturbative constant BG, which actually is a function

of Nc, is what we would like to estimate in the following. For future reference, we note

that a logarithmic derivative of f MS with respect to g2
3 immediately produces the gluon

condensate:

1

2g2
3

〈

Tr [FklFkl]
〉

MS

= 3g6
3

dAN3
c

(4π)4

[(

43

12
− 157

768
π2

)(

ln
µ̄

2Ncg2
3

− 1

3

)

+ BG

]

. (2.4)

We now go to lattice regularization. In standard Wilson discretization, the lattice

action, SL, corresponding to eq. (2.1), reads

SL = β
∑

x

∑

k<l

[

1 − Πkl(x)
]

, (2.5)

where Πkl(x) ≡ Re[Tr Ukl(x)]/Nc, Ukl(x) ≡ Uk(x)Ul(x+k)U †
k (x+ l)U †

l (x) is the plaquette,

Uk(x) is a link matrix, x + k ≡ x + aε̂k, where a is the lattice spacing and ε̂k is a unit

vector, and

β ≡ 2Nc

g2
3a

. (2.6)

Note that the gauge coupling does not get renormalised in 3d, and the parameters g2
3

appearing in eqs. (2.1), (2.6) can hence be assumed finite and equivalent. The observable

we consider is still the vacuum energy density, eq. (2.2), which in lattice regularization

reads

f L ≡ − lim
V →∞

1

V
ln

[
∫

DUk exp
(

−SL

)

]

, (2.7)

where DUk denotes integration over link matrices with the gauge-invariant Haar measure.

Being in principle physical quantities, the values of f MS and f L must agree, provided

that suitable vacuum counterterms are added to the theory. Due to super-renormalizability,

there can be such counterterms up to 4-loop level only [24], and correspondingly

∆f ≡ f L − f MS

= C1
1

a3

(

ln
1

ag2
3

+ C ′
1

)

+ C2
g2
3

a2
+ C3

g4
3

a
+ C4 g6

3

(

ln
1

aµ̄
+ C ′

4

)

+ O(g8
3a) , (2.8)

where the Ci are dimensionless functions of Nc. The values of C1, C2, C3, C4 are known, as

we will recall presently; C ′
1 is related to the precise normalisation of the Haar integration

measure and has no physical significance; and C ′
4 will be estimated below.
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Correspondingly, the gluon condensates, i.e. the logarithmic derivatives of f MS, f L

with respect to g2
3 , can also be related by a perturbative 4-loop computation. Noting that

three-dimensional rotational and translational symmetries allow us to write

−g2
3

∂

∂g2
3

f L =
3β

a3
〈1 − Π12〉L , (2.9)

and employing eqs. (2.4), (2.8), leads to [17]

8
dAN6

c

(4π)4
BG = lim

β→∞
β4

{

〈1 − Π12〉L −
[

c1

β
+

c2

β2
+

c3

β3
+

c4

β4

(

ln β + c′4

)

]}

. (2.10)

The values of the constants c1, . . . , c
′
4 are trivially related to those of C1, . . . , C

′
4 in eq. (2.8):

c1 = C1/3, c2 = −2NcC2/3, c3 = −8N2
c C3/3, c4 = −8N3

c C4 and, in particular,

c′4 = C ′
4 −

1

3
− 2 ln(2Nc) . (2.11)

For Nc = 3, the constants read [17, 25 – 27]

c1 =
dA

3
≈ 2.66666667 , (2.12)

c2 = 1.951315(2) , (2.13)

c3 = 6.8612(2) , (2.14)

c4 = 8
dAN6

c

(4π)4

(

43

12
− 157

768
π2

)

≈ 2.92942132 . (2.15)

Moreover, lattice measurements [17] have shown that, for Nc = 3,

BG +

(

43

12
− 157

768
π2

)

c′4 = 10.7 ± 0.4 . (2.16)

In order to extract BG, as is our goal, we need to determine the unknown constant c′4
in eq. (2.16). This can be achieved by repeating the same setup as above, but by regulating

infrared (IR) divergences through a mass regulator, m, instead of confinement. Indeed, the

difference in eq. (2.8) is IR insensitive, and does not change. Thus we can extract C ′
4 this

way and, from eq. (2.11), c′4. We denote quantities computed with a mass regulator with

a tilde.

With a mass regulator, the continuum computation produces [23]

f̃ MS = · · · − g6
3

dAN3
c

(4π)4

[(

43

12
− 157

768
π2

)

ln
µ̄

2m
+ B̃MS(α)

]

+ O
(g8

3

m

)

, (2.17)

where the lower order terms omitted vanish for m → 0, and B̃MS depends on the gauge

parameter α, since the introduction of a mass breaks gauge invariance. If, on the other

hand, we carry out the same computation in lattice regularization, we expect

f̃ L = · · · − g6
3

dAN3
c

(4π)4

[(

43

12
− 157

768
π2

)

ln
1

am
+ B̃L(α) + O(ma)

]

+ O
(

g8
3a,

g8
3

m

)

, (2.18)
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where the lower order terms omitted go over to the ones in eq. (2.8) for m → 0. Given

these forms and the IR insensitivity of the difference in eq. (2.8), we get

∆f = lim
m→0

[

f̃ L − f̃ MS

]

= · · · − g6
3

dAN3
c

(4π)4

[(

43

12
− 157

768
π2

)

ln
2

aµ̄
+ B̃L(α) − B̃MS(α)

]

+ O(g8
3a) , (2.19)

where the lower order terms omitted agree with eq. (2.8). Comparing the O(g6
3) terms with

eq. (2.8), we can read off C ′
4. Subsequently, eq. (2.11) gives c′4. Inserting finally the result

from eq. (2.16), we arrive at the master relation

BG = 10.7 ± 0.4 − B̃L(α) + B̃MS(α) +

(

43

12
− 157

768
π2

)(

1

3
+ ln 2 + 2 ln Nc

)

. (2.20)

It remains to determine B̃MS(α) and B̃L(α). Since the result of eq. (2.20) is gauge

independent, we choose the covariant Feynman gauge (α = 1) in the following. A 4-loop

continuum computation, described in Ref. [23], leads to a small set of fully massive master

integrals that are known with high precision [28], and produces (see also Ref. [29])

B̃MS(1) = −2.16562591949800919016 . . . . (2.21)

On the other hand, taking a logarithmic derivative with respect to g2
3 from eq. (2.18), we

obtain, in complete analogy with eq. (2.10),

8
dAN6

c

(4π)4
B̃L(α) = lim

m→0
β4

{

〈1 − Π̃12〉L
∣

∣

∣

up to 4-loop
−

[

c1

β
+

c2

β2
+

c3

β3
+

c4

β4
ln

1

am

]}

. (2.22)

Our task in the following is to compute the right-hand side of this equation for α = 1 and,

afterwards, to insert the result into eq. (2.20), in order to estimate BG.

3. Numerical stochastic perturbation theory

To carry out the limit in eq. (2.22) requires a 4-loop computation in lattice perturbation

theory. As the master integrals that appear in higher loop computations in lattice regu-

larization need to be evaluated numerically in any case, we choose to carry out the whole

computation numerically. This can be achieved through the use of Numerical Stochastic

Perturbation Theory (NSPT) [30], pioneered in recent years by the Parma group; a full

account of the method can be found in Ref. [31].

In its “purest” form, NSPT can be applied without either gauge fixing or masses as

IR regulators. Since we compare with a dimensionally regularized gauge fixed continuum

computation with a mass as an IR regulator, however, we need to introduce the same tools

in NSPT. The first two subsections describe our general implementation, and the third

collects some technical details of the computation.
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3.1 NSPT in a covariant gauge

NSPT relies on Stochastic Quantization [32] (for an extensive review, see Ref. [33]). In

this approach quantum fields are given an extra coordinate, τ , which is to be regarded as

a stochastic time in which an evolution takes place according to the Langevin equation.

This is in close analogy with the “time” evolution of the Markov chain that is used in

standard Monte Carlo simulations; indeed, Stochastic Quantization can also be used for

Monte Carlo simulations [34] (for a concise review, see Ref. [35]).

For lattice gauge theories, the Langevin equation reads

∂τUk,η(x, τ) = −i
{

∇k,x S[Uk,η] + ηk(x, τ)
}

Uk,η(x, τ) , (3.1)

where we assume the use of lattice units (a = 1) in the spatial directions. The derivative

∇k,x is defined [36] as ∇k,x ≡ TA∇A
k,x, with ∇A

k,xS[Uk(x)] ≡ limε→0{S[exp(iεTA)Uk(x)] −
S[Uk(x)]}/ε, where TA are the generators in the fundamental representation, normalised

as before. Moreover, ηk is a gaussian noise in the adjoint representation, ηk ≡ ηA
k TA. In

eq. (3.1) we adhere to a precise notation in which the dependence of the solution on the

stochastic noise is explicitely shown. Since this notation is a bit pedantic, we will drop

it in the following. It is worth stressing that the evolution dictated by eq. (3.1) preserves

unitarity, and that ∇k,x is consistent with partial integration over the Haar measure.

The main assertion of Stochastic Quantization is that the path integral correlation

functions of the field theory, computed with the Haar measure, can be traded for stochastic

time averages in the asymptotic τ → ∞ limit:

1

Z

∫

DUk O[Uk(x)] exp(−S) = lim
τ→∞

1

τ

∫ τ

0
dτ ′O[Uk(x, τ ′)] , (3.2)

where O is some observable. NSPT is obtained by expressing the solution of the Langevin

equation as a power series in the coupling constant and by numerically integrating the

hierarchy of equations that results from inserting this expansion into eq. (3.1). In our

notation the expansion reads [30, 31]

Uk(x) = 1 +

N
∑

i=1

β− i

2 U
(i)
k (x) , (3.3)

in which N is the highest order one wants to reach in the computation. In our case we

need to expand the field up to β−4, that is N = 8. Note that since eq. (3.1) guarantees

unitarity by construction, the terms U
(i)
k (x) will automatically inherit the corresponding

properties.

While the spirit of Parisi’s and Wu’s original paper [32] was to offer a possibility for

performing perturbative computations without gauge fixing, gauge fixing can naturally

be added to the framework through the Faddeev-Popov mechanism, like to lattice gauge

theory in general. The partition function is written as

Z =

∫

DUk det∆FP exp (− SL− SGF) , (3.4)

– 6 –
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where SL is the Wilson action in eq. (2.5). For SGF, we choose the standard covariant

form,

SGF =
β

4Ncα

∑

x,A

[

∂̂L
k φA

k (x)
]2

, (3.5)

where α is the gauge parameter; ∂̂L
k is the left difference operator; we have defined Lie

algebra valued fields φk through Uk = exp(iφk); and we have written φk = φA
k TA. The

naive continuum limit is obtained through the identification φk = ag3Ak. Once we enforce

the expansion in eq. (3.3) for the links, the Lie algebra valued fields are expanded as well:

one simply needs the Taylor series for φk = −i ln[1 + δUk].

Note that in standard lattice perturbation theory eq. (3.4) is further modified by

writing the functional integration in terms of φk. On the contrary, we directly expand in

terms of the link variables Uk (cf. eq. (3.3)), in terms of which eq. (3.1) is formulated.

Therefore we do not need to add any “measure term” to the action. Nevertheless, the

values of various operator expectation values remain identical, order by order in β−1, to

those in the standard perturbative framework.

The Faddeev-Popov operator corresponding to the gauge function in eq. (3.5) reads

∆FP ≡ −∂̂L
k D̂k[φ]. Since SGF is expressed in terms of Lie algebraic fields, D̂k[φ] comes from

evaluating the response of the field φk to a gauge transformation. The latter is defined in

terms of the link variables Uk, so it does not come as a surprise that D̂k[φ] is not expressed

in closed form. It can however be written as a perturbative expansion, whose first terms

read (see e.g. Ref. [37], whose notations we follow)

D̂k[φ](x) =

[

1+
i

2
Φk(x)− 1

12
Φ2

k(x)− 1

720
Φ4

k(x)− 1

30240
Φ6

k(x)+O
(

Φ8
k

)

]

∂̂R
k +iΦk(x) , (3.6)

where ∂̂R
k is the right difference operator, while Φk is the field in the adjoint representation,

Φk(x) ≡ φA
k (x) FA , (FA)BC = −ifABC . (3.7)

In order to set up the proper Langevin equation, we finally rephrase the Faddeev-Popov

determinant as a new contribution to the action, det ∆FP = exp(Tr ln ∆FP).

3.2 Mass regulator

We still need to add a mass regulator to the gauge-fixed framework. We note that the same

mass is given to the gluon and the ghost fields in the continuum computation we want to

match to. We therefore modify the total action to become

S̃ ≡ S̃L + SGF + S̃FP . (3.8)

The gluonic action has been modified by a mass term,

S̃L ≡ SL +
β (am)2

4Nc

∑

x

φA
k (x)φA

k (x) , (3.9)

and the Faddeev-Popov action reads

S̃FP ≡ −Tr ln ∆̃FP , ∆̃FP ≡ −∂̂L
k D̂k[φ] + (am)2 . (3.10)

– 7 –
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Even if we never make use of ghost fields in our approach, eq. (3.10) amounts to giving

them a mass, as is clear from writing the operator ∆̃FP in Fourier-representation.

3.3 Some technical implementation issues

To treat the Faddeev-Popov determinant as a part of the action means that, because

of the Langevin equation, one has to face the quantity ∇k,xS̃FP = −∇k,xTr [ln ∆̃FP] =

−TATr [∇A
k,x∆̃FP ∆̃−1

FP], with ∆̃FP from eq. (3.10). We follow the procedure proposed in

Ref. [38] (see also Ref. [34]). Our study is actually the first practical implementation, but

the essential ingredients are the same as for the treatment of the fermionic determinant in

unquenched NSPT, as discussed in Ref. [31].

By introducing an extra gaussian noise ξ normalized as 〈ξ∗kξn〉ξ = δkn, one can substi-

tute1

− Tr [∇A
k,x∆̃FP ∆̃−1

FP] −→ −〈Re{ξ∗k(∇A
k,x∆̃FP)kl(∆̃

−1
FP)lnξn}〉ξ . (3.11)

Taking the real part would be unnecessary after the average 〈. . .〉ξ, but we find it convenient

to impose it already before the averaging. The advantage of the form introduced is made

clear by rewriting

ξ∗k(∇A
k,x∆̃FP)kl(∆̃

−1
FP)lnξn ≡ ξ∗k(∇A

k,x∆̃FP)klψl , (3.12)

where ψ ≡ ∆̃−1
FP ξ. In NSPT, then, we need to compute

ψ(i) ≡ (∆̃−1
FP)(i) ξ . (3.13)

It is worth stressing that the noise ξ has no power expansion, while the field ψ (like any

other field in NSPT) is expanded because of the power expansion of ∆̃−1
FP (which is a

function of the fields φ, i.e. of the fields U).

That eq. (3.13) can be evaluated efficiently within the NSPT framework stems from the

expansion of the operator ∆̃−1
FP. Once a generic matrix M is given as a power expansion,

M = M (0) +
∞
∑

i=1

β− i

2 M (i) , (3.14)

the expansion for its inverse reads

M−1 = [M (0)]
−1

+

∞
∑

i=1

β− i

2 [M−1]
(i)

. (3.15)

Here the non-trivial terms are obtained through a simple recursive relation:

[M−1]
(1)

= −[M (0)]
−1

M (1)[M (0)]
−1

,

[M−1]
(2)

= −[M (0)]
−1

M (2)[M (0)]
−1 − [M (0)]

−1
M (1)[M−1]

(1)
,

. . .

[M−1]
(i)

= −[M (0)]
−1

i−1
∑

j=0

M (i−j)[M−1]
(j)

. (3.16)

1Here k, l, n should be regarded as multi-indices, including space coordinates and colour.
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In our case this leads to

ψ(0) = [∆̃
(0)
FP]

−1
ξ ,

ψ(1) = −[∆̃
(0)
FP]

−1
∆̃

(1)
FPψ(0) ,

ψ(2) = −[∆̃
(0)
FP]

−1 [

∆̃
(2)
FPψ(0) + ∆̃

(1)
FPψ(1)

]

,

. . .

ψ(i) = −[∆̃
(0)
FP]

−1
i−1
∑

j=0

∆̃
(i−j)
FP ψ(j) . (3.17)

Eq. (3.17) states that there is no actual matrix inversion to take. Indeed, [∆̃
(0)
FP]

−1
is inde-

pendent of the φ fields and its expression is well known: it is the (would-be) ghost propa-

gator, diagonal in Fourier space. Note that the mass regulator makes it well-defined at

every value of the momentum. As for the various orders ψ(i), they are naturally computed

by iteration. At every order only one application of [∆̃
(0)
FP]

−1
is needed: this propagator

operates on a sum of already computed quantities (the lower order ψ’s). While [∆̃
(0)
FP]

−1
is

diagonal in momentum space, all the other operators are almost diagonal in configuration

space. This suggests the strategy of going back and forth from Fourier space via a Fast

Fourier Transform. It remains to point out that also the expression for ∇A
k,x∆̃FP (and its

power expansion) is substantially local, so that the big inner product in eq. (3.12) is not too

difficult to deal with. Finally, S̃FP and ∆̃FP are naturally written in the adjoint represen-

tation, so that one has to devise an efficient way of dealing with cascades of commutators

of the φ fields.

In order to solve eq. (3.1) numerically, the stochastic time variable τ needs to be

discretised: τ ≡ naτ , where n is an integer. We use different values of aτ , average over

each thermalised signal, and then extrapolate in order to get the value of the desired

observable at aτ = 0. Eq. (3.1) is discretized in the standard way [34] which automatically

preserves the unitarity of our degrees of freedom:

Uk(x, (n + 1)aτ ) = e−iFk(x,naτ )[U,η] Uk(x, naτ ) , (3.18)

where

Fk(x, naτ )[U, η] = aτ∇k,xS̃[U ] +
√

aτ ηk(x, naτ ) , (3.19)

and we have assumed the normalization 〈η(x,maτ )η(y, naτ )〉η = 2δxyδmn.

We note that eq. (3.18) is only accurate to first order in aτ . As a consequence, if the

action is written as a sum (S̃ ≡ S̃L + SGF + S̃FP), one can to the same accuracy rewrite

eq. (3.18) as

Uk(x, (n + 1)aτ ) = e−iF
(2)
k

[U ]
{

e−iF
(1)
k

[U,η] Uk(x, naτ )
}

. (3.20)

The advantage of this form is that from the point of view of program implementation, it

is easier to first evolve the field by

F (1)[U, η] = aτ∇k,xSL +
√

aτ ηk (3.21)
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am exact NSPT

0.10 2.6579 2.6581(6)

0.15 2.6481 2.6476(6)

0.20 2.6379 2.6379(8)

0.40 2.5713 2.5710(8)

0.60 2.4714 2.4710(8)

0.80 2.3485 2.3481(7)

1.00 2.2119 2.2117(6)

1.20 2.0689 2.0681(5)

1.40 1.9251 1.9247(5)

1.60 1.7848 1.7846(4)

Table 1: Comparison between “exact” and NSPT results for the coefficient of β−1 for the observable

in eq. (4.1). The lattice extent is L = 8a, except for am = 0.10, where it is L = 10a.

(i.e. the contribution coming from standard Wilson action plus gaussian noise) and then by

F (2)[U ] = aτ∇k,x(S̃ − SL) . (3.22)

Indeed, F [2][U ] depends on the U ’s only through the φ’s, i.e. the first step is performed in

terms of the U fields, the second in terms of the φ fields. It is also easy to realize that the

first step can be implemented as a sequential sweep through the lattice, while the second

one requires the construction of a global contribution (the inner product in eq. (3.12)).

4. Data analysis and results

Since this work is the first time that the Faddeev-Popov procedure was implemented in

NSPT, much attention was devoted to reliability checks, which we describe in the first

subsection. The second subsection is devoted to carrying out the limit in eq. (2.22). All

the numerical values shown in the following were obtained with Nc = 3.

4.1 Consistency checks

The first checks were performed against the theory without gauge fixing, both in 3 and in 4

dimensions. In other words, we set m ≡ 0, and checked that we reproduce gauge invariant

results for the plaquette expectation value, irrespective of the gauge parameter α used.

In particular, we made sure that, for fixed volumes (V ≡ L3), we could reproduce the 3d

results in Ref. [26], up to 4-loop order.

We then plugged the mass terms in. A first test was that the leading O(β−1) contri-

bution to the plaquette expectation value appearing in eq. (2.22),

〈1 − Π̃12〉L =
1

β

dA

3

[

1 − (am)2

N3

N
∑

ni=1

1
∑3

i=1 4 sin2(πni/N) + (am)2

]

+ O
( 1

β2

)

, (4.1)
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Figure 1: Examples of finite-volume values (open diamonds) and infinite-volume extrapolations

(open squares) for the coefficient of β−3 (left) and β−4 (right) in the mass regularized plaquette

expectation value, eq. (4.1).

where N ≡ L/a, was correctly reproduced by the NSPT numerics. Table 1 shows the

results for the coefficient of β−1 and gives an idea of the size of errors. It also lists all the

mass values that we will use in the following.

As a final preparation we checked, as already explained in Ref. [39], that if the volume

is kept finite, and a fit in (am)2 is performed for measurements carried out with the masses

shown in Table 1, then the intercept with the axis am = 0 agrees with previous results in

the massless theory, obtained without gauge fixing [26].

4.2 Detailed analysis

After the consistency checks, we turn to the actual analysis of eq. (2.22). It consists of two

steps. First, for any given value of m, we need to carry out an infinite-volume extrapolation.

Second, the infinite-volume extrapolations need in turn to be extrapolated to m → 0, as

dictated by eq. (2.22). Both of these extrapolations are rather delicate so let us describe

the procedure that we adopt in some detail.

For the infinite-volume extrapolations, we expect that the dependence on L is exponen-

tially small, once the volume is large enough. Concretely, inspecting the 1-loop expression

in eq. (4.1) for am ¿ 1 but at finite volumes, suggests that for mL À 1 the behaviour is

〈1 − Π̃12〉L ∼ γ0 +
1

mL

[

γ1 exp(−mL) + γ2 exp(−
√

2mL) + · · ·
]

, (4.2)

where γ1, γ2, . . . have all the same sign. However, for our larger masses am & 0.40 (cf.

Table 1), the volume dependence appears in fact to be dominated by discretization effects

not contained in eq. (4.2). Moreover, at higher loop orders other structures also appear

and it is not clear a priori how large mL has to be for them to remain negligible (note

– 11 –
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Figure 2: An example of different infinite-volume extrapolations for the coefficient of β−4 in

the mass regularized plaquette expectation value, for am = 0.10. The open square denotes the

extrapolation described in the text; the closed circle is an extrapolation according to eq. (4.2) (with

unconstrained coefficients); and the closed triangle assumes yet another phenomenological fit form,

δ0 + exp(−mL)[δ1 + δ2(mL)−4].

that for the important small masses am . 0.20 we are only able to go up to mL ∼ 2, cf.

figure 1).

For these reasons, we adopt a practical procedure in the following whereby we increase

the volume until no volume dependence is seen within the error bars, and then fit a constant

to data in this range. To be conservative, the resulting error bars are multiplied by a factor

two. The original “raw” data at finite volumes, and the corresponding infinite-volume

extrapolations obtained with the recipe just described, are illustrated in figure 1 for a few

masses. However, we have also tried other procedures, like a fit according to eq. (4.2) or to

different phenomenological forms ruled by decaying exponentials multiplied by polynomial

prefactors. Figure 2 gives an idea of the effects of these variations on the infinite-volume

extrapolations. It can be seen that our doubled error bars can cover all the variations.

Given the infinite-volume extrapolations, we can carry out the extrapolation am → 0.

Motivated again by a 1-loop analytic computation (eq. (4.1) for N → ∞), we use an ansatz

allowing for any positive powers of am. There is the problem, however, that the data points

are more precise at larger masses: the absolute errors decrease roughly as ∼ 1/(am)2, i.e.

vary by two orders of magnitude. Thus large masses tend to dominate the fit, while the

most important region should be that of small masses.

We confront this situation in the following way. First of all, we allow for a high-order

fit polynomial, and monitor the stability of the results, and the χ2-value of the fit, with

respect to the order of polynomial, as well as the number of masses that are taken into

account. Second, we consider both the regular χ2-function, and modified ones where the

errors are weighted by am or by (am)2, so as to make the contributions of the different
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 + 2.9294 ln(am)

Figure 3: The am → 0 extrapolations (dashed lines, with the intercepts with the axis am = 0

shown with closed squares) through the infinite-volume extrapolated data points (open squares),

for the coefficient of β−3 (left) and β−4 (right) in the mass regularized plaquette expectation value.

data points more balanced. All of these fits generally show an extremum as the order of the

fit polynomial is increased, with the extremal values differing by less than the statistical

errors. Examples of the fits are shown in figure 3.

In order to benchmark this strategy, let us first apply it at 1-loop, 2-loop, and 3-loop

levels. We obtain

lim
m→0

{

lim
L→∞

〈1 − Π̃12〉L
∣

∣

∣

β−1

}

= 2.672 ± 0.008 , (4.3)

lim
m→0

{

lim
L→∞

〈1 − Π̃12〉L
∣

∣

∣

β−2

}

= 1.955 ± 0.016 , (4.4)

lim
m→0

{

lim
L→∞

〈1 − Π̃12〉L
∣

∣

∣

β−3

}

= 6.83 ± 0.10 . (4.5)

These numbers are to be compared with the known results in eqs. (2.12)–(2.14); we find

perfect agreement within error bars.

We then repeat the same procedure at 4-loop level. As shown by eq. (2.22), the

extrapolation am → 0 can only be carried out after the subtraction of the logarithmic IR

term. The fit shown in figure 3 produces

B̃L(1) =

(

2π2

27

)2

× (25.8 ± 0.8) = 13.8 ± 0.4 . (4.6)

Inserting into eq. (2.20), a significant cancellation takes place, and we obtain

BG = −0.2 ± 0.4(MC) ± 0.4(NSPT) , (4.7)

where the error “MC” originates from the lattice Monte Carlo simulations in Ref. [17], and

the error “NSPT” from the analysis in the present paper. Eq. (4.7) is our final result. Let
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us also record the Nc = 3 values for the constant C ′
4 in eq. (2.8) and c′4 in eq. (2.10),

C ′
4 = 10.9 ± 0.3(NSPT) , c′4 = 7.0 ± 0.3(NSPT) . (4.8)

5. Conclusions and perspectives

We have demonstrated in this paper the feasibility of determining the non-perturbative

constant BG, defined through eq. (2.3), by combining previous lattice Monte Carlo re-

sults [17] with a 4-loop perturbative matching step. The matching involves a comparison

of a continuum MS computation [23] with the corresponding lattice regularized computa-

tion. The latter we have carried out with the help of Numerical Stochastic Perturbation

Theory (NSPT). The final estimate for the new matching coefficient (with two different

conventions) is shown in eq. (4.8). Taking into account the Monte Carlo results, the final

estimate for BG is shown in eq. (4.7).

We note that within the current errors, BG is consistent with zero. This is a matter of

conventions, however; for instance, had we not made the arbitrary choice of including the

factor 2 inside the logarithm in eq. (2.3), the corresponding constant would be non-zero by

a significant amount.

Given that the physical pressure of hot QCD is numerically fairly sensitive to BG [12],

it would of course be desirable to improve on the accuracy of BG, both on the lattice Monte

Carlo and on the NSPT sides. For instance, it would be interesting to repeat the current

study with traditional techniques [27]. Moreover, it should in principle be possible to carry

out the matching leading to eqs. (4.8) by using a finite volume rather than a mass as an

infrared regulator; for this approach the NSPT side exists already [26], but the 4-loop MS

computations of Ref. [23] would have to be repeated with techniques discussed at 1-loop

level for instance in Refs. [40].

Apart from these challenges, there is now an ever more compelling case for determining

the last remaining purely perturbative O(g6) term, i.e. the constant denoted by βE1 in

Ref. [12]. Only after this has been added does the µ̄-dependence of eq. (2.3) get cancelled,

such that the full physical pressure is scale-independent, as it has to be.
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